
RFC 9842
Compression Dictionary Transport

Abstract
This document specifies a mechanism for dictionary-based compression in the Hypertext
Transfer Protocol (HTTP). By utilizing this technique, clients and servers can reduce the size of
transmitted data, leading to improved performance and reduced bandwidth consumption. This
document extends existing HTTP compression methods and provides guidelines for the delivery
and use of compression dictionaries within the HTTP protocol.

Stream: Internet Engineering Task Force (IETF)
RFC: 9842
Category: Standards Track
Published: September 2025
ISSN: 2070-1721
Authors: P. Meenan, Ed.

Google LLC
Y. Weiss, Ed.
Shopify Inc.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9842

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Meenan & Weiss Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9842
https://www.rfc-editor.org/info/rfc9842
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Use Cases

1.1.1. Version Upgrade

1.1.2. Common Content

1.2. Notational Conventions

2. Dictionary Negotiation

2.1. Use-As-Dictionary

2.1.1. "match"

2.1.2. "match-dest"

2.1.3. "id"

2.1.4. "type"

2.1.5. Examples

2.2. Available-Dictionary

2.2.1. Dictionary Freshness Requirement

2.2.2. Dictionary URL Matching

2.2.3. Multiple Matching Dictionaries

2.3. Dictionary-ID

3. The "compression-dictionary" Link Relation Type

4. Dictionary-Compressed Brotli

5. Dictionary-Compressed Zstandard

6. Negotiating the Content Encoding

6.1. Accept-Encoding

6.2. Content-Encoding

7. IANA Considerations

7.1. Content Encoding Registration

7.2. Header Field Registration

7.3. Link Relation Registration

3

3

3

4

5

6

6

6

7

7

7

7

8

8

8

9

9

10

10

11

11

12

12

12

12

13

13

RFC 9842 Compression Dictionary Transport September 2025

Meenan & Weiss Standards Track Page 2

8. Compatibility Considerations

9. Security Considerations

9.1. Changing Content

9.2. Reading Content

9.3. Security Mitigations

9.3.1. Cross-Origin Protection

9.3.2. Response Readability

9.3.3. Server Responsibility

10. Privacy Considerations

11. References

11.1. Normative References

11.2. Informative References

Authors' Addresses

13

13

13

14

14

14

14

14

15

15

15

16

17

1. Introduction
This specification defines a mechanism for using designated HTTP responses as an
external dictionary for future HTTP responses for compression schemes that support using
external dictionaries (e.g., Brotli and Zstandard).

This document describes the HTTP headers used for negotiating dictionary usage and registers
content-encoding values for compressing with Brotli and Zstandard using a negotiated
dictionary.

The negotiation of dictionary usage leverages HTTP's content negotiation (see
) and is usable with all versions of HTTP.

[HTTP]

[RFC7932] [ZSTD]

Section 12 of
[HTTP]

1.1. Use Cases
Any HTTP response can be specified for use as a compression dictionary for future HTTP
requests, which provides a lot of flexibility. Two common use cases that are seen frequently are
described below.

1.1.1. Version Upgrade

Using a previous version of a resource as a dictionary for a newer version enables delivery of a
delta-compressed version of the changes, usually resulting in significantly smaller responses
than what can be achieved by compression alone.

RFC 9842 Compression Dictionary Transport September 2025

Meenan & Weiss Standards Track Page 3

https://rfc-editor.org/rfc/rfc9110#section-12

For example:

Figure 1: Version Upgrade Example

Client Server

GET /app.v1.js

200 OK
Use-As-Dictionary: match="/app*js"
<full app.v1.js resource - 100KB compressed>

Some time later ...

Client Server

GET /app.v2.js
Available-Dictionary: :pZGm1A...2a2fFG4=:
Accept-Encoding: gzip, br, zstd, dcb, dcz

200 OK
Content-Encoding: dcb
<delta-compressed app.v2.js resource - 1KB>

1.1.2. Common Content

If several resources share common patterns in their responses, then it can be useful to reference
an external dictionary that contains those common patterns, effectively compressing them out
of the responses. Some examples of this are common template HTML for similar pages across a
site and common keys and values in API calls.

For example:

RFC 9842 Compression Dictionary Transport September 2025

Meenan & Weiss Standards Track Page 4

Figure 2: Common Content Example

Client Server

GET /index.html

200 OK
Link: <.../dict>; rel="compression-dictionary"
<full index.html resource - 100KB compressed>

GET /dict

200 OK
Use-As-Dictionary: match="/*html"

Some time later ...

Client Server

GET /page2.html
Available-Dictionary: :pZGm1A...2a2fFG4=:
Accept-Encoding: gzip, br, zstd, dcb, dcz

200 OK
Content-Encoding: dcb
<delta-compressed page2.html resource - 10KB>

1.2. Notational Conventions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

This document uses the following terminology from to
specify syntax and parsing: Dictionary, String, Inner List, Token, and Byte Sequence.

This document uses the line folding strategies described in .

This document also uses terminology from and .

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

Section 3 of [STRUCTURED-FIELDS]

[FOLDING]

[HTTP] [HTTP-CACHING]

RFC 9842 Compression Dictionary Transport September 2025

Meenan & Weiss Standards Track Page 5

https://rfc-editor.org/rfc/rfc9651#section-3

2. Dictionary Negotiation

2.1. Use-As-Dictionary
When responding to an HTTP Request, a server can advertise that the response can be used as a
dictionary for future requests for URLs that match the rules specified in the "Use-As-Dictionary"
response header.

The "Use-As-Dictionary" response header is a Structured Field Dictionary
with values for "match", "match-dest", "id", and "type".

[STRUCTURED-FIELDS]

2.1.1. "match"

The "match" value of the "Use-As-Dictionary" response header is a String value that provides the
URL Pattern to use for request matching (see).

The URL Pattern used for matching does not support using regular expressions.

The following algorithm is used to validate that a given String value is a valid URL Pattern that
does not use regular expressions and is for the same Origin () as the
dictionary. It will return TRUE for a valid match pattern and FALSE for an invalid pattern that

 be used.

Let MATCH be the value of "match" for the given dictionary.
Let URL be the URL of the dictionary request.
Let PATTERN be a "URL pattern struct" created by running the steps to "create a URL
pattern" by setting input=MATCH and baseURL=URL (see).
If the result of running the "has regexp groups" steps for PATTERN returns TRUE, then
return FALSE (see the last list in).
Return TRUE.

The "match" value is required and be included in the "Use-As-Dictionary" response header
for the dictionary to be considered valid.

Operating at the HTTP level, the specified match patterns will operate on the percent-encoded
version of the URL path (see).

For example, the URL "http://www.example.com/düsseldorf" would be encoded as "http://
www.example.com/d%C3%BCsseldorf" and a relevant match pattern would be:

[URLPATTERN]

Section 4.3.1 of [HTTP]

MUST NOT

1.
2.
3.

Section 1.4 of [URLPATTERN]
4.

Section 1.4 of [URLPATTERN]
5.

MUST

Section 2 of [URL]

Use-As-Dictionary: match="/d%C3%BCsseldorf"

RFC 9842 Compression Dictionary Transport September 2025

Meenan & Weiss Standards Track Page 6

https://rfc-editor.org/rfc/rfc9110#section-4.3.1
https://urlpattern.spec.whatwg.org/#high-level-operations
https://urlpattern.spec.whatwg.org/#high-level-operations
https://rfc-editor.org/rfc/rfc3986#section-2

2.1.2. "match-dest"

The "match-dest" value of the "Use-As-Dictionary" response header is an Inner List of String
values that provides a list of Fetch request destinations for the dictionary to match (see
"RequestDestination" in).

An empty list for "match-dest" match all destinations.

For clients that do not support request destinations, the client treat it as an empty list and
match all destinations.

The "match-dest" value is optional and defaults to an empty list.

Section 5.4 of [FETCH]

MUST

MUST

2.1.3. "id"

The "id" value of the "Use-As-Dictionary" response header is a String value that specifies a server
identifier for the dictionary. If an "id" value is present and has a string length longer than zero,
then it be sent to the server in a "Dictionary-ID" request header when the client sends an
"Available-Dictionary" request header for the same dictionary (see Section 2.2).

The server identifier be treated as an opaque string by the client.

The server identifier be relied upon by the server to guarantee the contents of the
dictionary. The dictionary hash be validated before use.

The "id" value string length (after any decoding) supports up to 1024 characters.

The "id" value is optional and defaults to the empty string.

MUST

MUST

MUST NOT
MUST

2.1.4. "type"

The "type" value of the "Use-As-Dictionary" response header is a Token value that describes the
file format of the supplied dictionary.

"raw" is defined as a dictionary format that represents an unformatted blob of bytes suitable for
any compression scheme to use.

If a client receives a dictionary with a type that it does not understand, it use the
dictionary.

The "type" value is optional and defaults to "raw".

MUST NOT

2.1.5. Examples

2.1.5.1. Path Prefix
A response that contained a response header (as shown below) would specify matching any
document request for a URL with a path prefix of /product/ on the same Origin (

) as the original request:
Section 4.3.1 of

[HTTP]

RFC 9842 Compression Dictionary Transport September 2025

Meenan & Weiss Standards Track Page 7

https://fetch.spec.whatwg.org/#request-class
https://rfc-editor.org/rfc/rfc9110#section-4.3.1

NOTE: '\' line wrapping per RFC 8792

Use-As-Dictionary: \
 match="/product/*", match-dest=("document")

2.1.5.2. Versioned Directories
A response that contained a response header (as shown below) would match any path that starts
with "/app/" and ends with "/main.js":

Use-As-Dictionary: match="/app/*/main.js"

2.2. Available-Dictionary
When an HTTP client makes a request for a resource for which it has an appropriate dictionary,
it can add an "Available-Dictionary" request header to the request to indicate to the server that it
has a dictionary available to use for compression.

The "Available-Dictionary" request header is a Structured Field Byte
Sequence containing the SHA-256 hash of the contents of a single available dictionary.

The client only send a single "Available-Dictionary" request header with a single hash
value for the best available match that it has available.

For example:

[STRUCTURED-FIELDS]
[SHA-256]

MUST

Available-Dictionary: :pZGm1Av0IEBKARczz7exkNYsZb8LzaMrV7J32a2fFG4=:

2.2.1. Dictionary Freshness Requirement

To be considered as a match, the dictionary resource be either fresh or
allowed to be served stale (see).

MUST [HTTP-CACHING]
[RFC5861]

2.2.2. Dictionary URL Matching

When a dictionary is stored as a result of a "Use-As-Dictionary" directive, it includes a "match"
string and an optional "match-dest" string that are used to match an outgoing request from a
client to the available dictionaries.

To see if an outbound request matches a given dictionary, the following algorithm will return
TRUE for a successful match and FALSE for no-match:

If the current client supports request destinations and a "match-dest" string was provided
with the dictionary:

Let DEST be the value of "match-dest" for the given dictionary.
Let REQUEST_DEST be the value of the destination for the current request.

1.

◦
◦

RFC 9842 Compression Dictionary Transport September 2025

Meenan & Weiss Standards Track Page 8

If DEST is not an empty list and if REQUEST_DEST is not in the DEST list of destinations,
return FALSE.

Let BASEURL be the URL of the dictionary request.
Let URL represent the URL of the outbound request being checked.
If the Origin of BASEURL and the Origin of URL are not the same, return FALSE (see

).
Let MATCH be the value of "match" for the given dictionary.
Let PATTERN be a "URL pattern struct" created by running the steps to "create a URL
pattern" by setting input=MATCH and baseURL=URL (see).
Return the result of running the "match" steps on PATTERN with input=URL, which will
check for a match between the request URL and the supplied "match" string (see "Match" in

).

◦

2.
3.
4. Section

4.3.1 of [HTTP]
5.
6.

Section 1.4 of [URLPATTERN]
7.

Section 1.4 of [URLPATTERN]

2.2.3. Multiple Matching Dictionaries

When there are multiple dictionaries that match a given request URL, the client pick a
single dictionary using the following rules:

For clients that support request destinations, a dictionary that specifies and matches a
"match-dest" takes precedence over a match that does not use a destination.
Given equivalent destination precedence, the dictionary with the longest "match" takes
precedence.
Given equivalent destination and match length precedence, the most recently fetched
dictionary takes precedence.

MUST

1.

2.

3.

2.3. Dictionary-ID
When an HTTP client makes a request for a resource for which it has an appropriate dictionary
and the dictionary was stored with a server-provided "id" in the "Use-As-Dictionary" response
header, the client echo the stored "id" in a "Dictionary-ID" request header.

The "Dictionary-ID" request header is a Structured Field String of up to
1024 characters (after any decoding) and be identical to the server-provided "id".

For example, given an HTTP response that set a dictionary ID:

A future request that matches the given dictionary will include both the hash and the ID:

MUST

[STRUCTURED-FIELDS]
MUST

Use-As-Dictionary: match="/app/*/main.js", id="dictionary-12345"

Available-Dictionary: :pZGm1Av0IEBKARczz7exkNYsZb8LzaMrV7J32a2fFG4=:
Dictionary-ID: "dictionary-12345"

RFC 9842 Compression Dictionary Transport September 2025

Meenan & Weiss Standards Track Page 9

https://rfc-editor.org/rfc/rfc9110#section-4.3.1
https://rfc-editor.org/rfc/rfc9110#section-4.3.1
https://urlpattern.spec.whatwg.org/#high-level-operations
https://urlpattern.spec.whatwg.org/#high-level-operations

3. The "compression-dictionary" Link Relation Type
This specification defines the "compression-dictionary" link relation type that
provides a mechanism for an HTTP response to provide a URL for a compression dictionary that
is related to but not directly used by the current HTTP response.

The "compression-dictionary" link relation type indicates that fetching and caching the specified
resource is likely to be beneficial for future requests. The response to some of those future
requests likely have the ability to use the indicated resource as a compression dictionary.

Clients can fetch the provided resource at a time that they determine would be appropriate.

The response to the fetch for the compression dictionary needs to include a "Use-As-Dictionary"
response header and a caching response header for it to be usable as a compression dictionary.
The link relation only provides the mechanism for triggering the fetch of the dictionary.

The following example shows a link to a resource at https://example.org/dict.dat that is expected
to produce a compression dictionary:

[WEB-LINKING]

Link: <https://example.org/dict.dat>; rel="compression-dictionary"

Magic_Number:

SHA_256_Hash:

4. Dictionary-Compressed Brotli
The "dcb" content encoding identifies a resource that is a "Dictionary-Compressed Brotli" stream.

A "Dictionary-Compressed Brotli" stream has a fixed header that is followed by a Shared Brotli
 stream. The header consists of a fixed 4-byte sequence and a 32-byte hash of

the external dictionary that was used. The Shared Brotli stream is created using the referenced
external dictionary and a compression window that is at most 16 MB in size.

The dictionary used for the "dcb" content encoding is a "raw" dictionary type as defined in
Section 2.1.4 and is treated as a prefix dictionary as defined in .

The 36-byte fixed header is as follows:

4 fixed bytes -- 0xff, 0x44, 0x43, 0x42.

32 bytes. SHA-256 hash digest of the dictionary .

Clients that announce support for dcb content encoding be able to decompress resources
that were compressed with a window size of up to 16 MB.

With Brotli compression, the full dictionary is available during compression and decompression
independent of the compression window, allowing for delta-compression of resources larger
than the compression window.

[SHARED-BROTLI]

Section 8.2 of [SHARED-BROTLI]

[SHA-256]

MUST

RFC 9842 Compression Dictionary Transport September 2025

Meenan & Weiss Standards Track Page 10

https://rfc-editor.org/rfc/rfc9841#section-8.2

Magic_Number:

SHA_256_Hash:

5. Dictionary-Compressed Zstandard
The "dcz" content encoding identifies a resource that is a "Dictionary-Compressed Zstandard"
stream.

A "Dictionary-Compressed Zstandard" stream is a binary stream that starts with a 40-byte fixed
header and is followed by a Zstandard stream of the response that has been compressed
with an external dictionary.

The dictionary used for the "dcz" content encoding is a "raw" dictionary type as defined in
Section 2.1.4 and is treated as a raw dictionary as per .

The 40-byte header consists of a fixed 8-byte sequence followed by the 32-byte SHA-256 hash of
the external dictionary that was used to compress the resource:

8 fixed bytes -- 0x5e, 0x2a, 0x4d, 0x18, 0x20, 0x00, 0x00, 0x00.

32 bytes. SHA-256 hash digest of the dictionary .

The 40-byte header is a Zstandard skippable frame (little-endian 0x184D2A5E) with a 32-byte
length (little-endian 0x00000020) that is compatible with existing Zstandard decoders.

Clients that announce support for dcz content encoding be able to decompress resources
that were compressed with a window size of at least 8 MB or 1.25 times the size of the dictionary,
whichever is greater, up to a maximum of 128 MB.

The window size used will be encoded in the content (currently, this can be expressed in powers
of two only) and it be lower than this limit. An implementation treat a window size
that exceeds the limit as a decoding error.

With Zstandard compression, the full dictionary is available during compression and
decompression until the size of the input exceeds the compression window. Beyond that point,
the dictionary becomes unavailable. Using a compression window that is 1.25 times the size of
the dictionary allows for full delta compression of resources that have grown by 25% between
releases while still giving the client control over the memory it will need to allocate for a given
response.

[ZSTD]

Section 5 of [ZSTD]

[SHA-256]

MUST

MUST MAY

6. Negotiating the Content Encoding
When a compression dictionary is available to compress the response to a given request, the
encoding to be used is negotiated through the regular mechanism for negotiating content
encoding in HTTP through the "Accept-Encoding" request header and "Content-Encoding"
response header.

The dictionary to use is negotiated separately and advertised in the "Available-Dictionary"
request header.

RFC 9842 Compression Dictionary Transport September 2025

Meenan & Weiss Standards Track Page 11

https://rfc-editor.org/rfc/rfc8878#section-5

6.1. Accept-Encoding
When a dictionary is available for use on a given request and the client chooses to make
dictionary-based content encoding available, the client adds the dictionary-aware content
encodings that it supports to the "Accept-Encoding" request header. For example:

When a client does not have a stored dictionary that matches the request or chooses not to use
one for the request, the client send its dictionary-aware content encodings in the
"Accept-Encoding" request header.

Accept-Encoding: gzip, deflate, br, zstd, dcb, dcz

MUST NOT

6.2. Content-Encoding
If a server supports one of the dictionary encodings advertised by the client and chooses to
compress the content of the response using the dictionary that the client has advertised, then it
sets the "Content-Encoding" response header to the appropriate value for the algorithm selected.
For example:

If the response is cacheable, it include a "Vary" header to prevent caches from serving
dictionary-compressed resources to clients that don't support them or serving the response
compressed with the wrong dictionary. For example:

Content-Encoding: dcb

MUST

Vary: accept-encoding, available-dictionary

7. IANA Considerations

Name:
Description:
Reference:

Name:
Description:
Reference:

7.1. Content Encoding Registration
IANA has added the following entries to the "HTTP Content Coding Registry" maintained at

:

dcb
"Dictionary-Compressed Brotli" data format.

RFC 9842, Section 4

dcz
"Dictionary-Compressed Zstandard" data format.

RFC 9842, Section 5

<https://www.iana.org/assignments/http-parameters/>

RFC 9842 Compression Dictionary Transport September 2025

Meenan & Weiss Standards Track Page 12

https://www.iana.org/assignments/http-parameters/

7.2. Header Field Registration
IANA has added the following entries to the "Hypertext Transfer Protocol (HTTP) Field Name
Registry" maintained at :

Field Name Status Reference

Use-As-Dictionary permanent RFC 9842, Section 2.1

Available-Dictionary permanent RFC 9842, Section 2.2

Dictionary-ID permanent RFC 9842, Section 2.3

Table 1

<https://www.iana.org/assignments/http-fields/>

Relation Name:
Description:
Reference:

7.3. Link Relation Registration
IANA has added the following entry to the "Link Relation Types" registry maintained at

:

compression-dictionary
Refers to a compression dictionary used for content encoding.

RFC 9842, Section 3

<https://
www.iana.org/assignments/link-relations/>

8. Compatibility Considerations
It is not unusual for devices to be on the network path that intercept, inspect, and process HTTP
requests (web proxies, firewalls, intrusion detection systems, etc.). To minimize the risk of these
devices incorrectly processing dictionary-compressed responses, compression dictionary
transport only be used in secure contexts (HTTPS).MUST

9. Security Considerations
The security considerations for Brotli , Shared Brotli , and Zstandard

 apply to the dictionary-based versions of the respective algorithms.
[RFC7932] [SHARED-BROTLI]

[ZSTD]

9.1. Changing Content
The dictionary must be treated with the same security precautions as the content because a
change to the dictionary can result in a change to the decompressed content.

The dictionary is validated using an SHA-256 hash of the content to make sure that the client and
server are both using the same dictionary. The strength of the SHA-256 hash algorithm isn't
explicitly needed to counter attacks since the dictionary is being served from the same origin as
the content. That said, if a weakness is discovered in SHA-256 and it is determined that the

RFC 9842 Compression Dictionary Transport September 2025

Meenan & Weiss Standards Track Page 13

https://www.iana.org/assignments/http-fields/
https://www.iana.org/assignments/link-relations/
https://www.iana.org/assignments/link-relations/

dictionary negotiation should use a different hash algorithm, the "Use-As-Dictionary" response
header can be extended to specify a different algorithm and the server would just ignore any
"Available-Dictionary" requests that do not use the updated hash.

9.2. Reading Content
The compression attacks in show that it's a bad idea to compress data
from mixed (e.g., public and private) sources. The data sources include not only the compressed
data but also the dictionaries. For example, if secret cookies are compressed using a public-data-
only dictionary, information about the cookies is still leaked.

The dictionary can reveal information about the compressed data and vice versa. That is, data
compressed with the dictionary can reveal contents of the dictionary when an adversary can
control parts of the data to compress and see the compressed size. On the other hand, if the
adversary can control the dictionary, the adversary can learn information about the compressed
data.

Section 2.6 of [RFC7457]

9.3. Security Mitigations
If any of the mitigations do not pass, the client drop the response and return an error.MUST

9.3.1. Cross-Origin Protection

To make sure that a dictionary can only impact content from the same origin where the
dictionary was served, the URL Pattern used for matching a dictionary to requests (Section 2.1.1)
is guaranteed to be for the same origin that the dictionary is served from.

9.3.2. Response Readability

For clients, like web browsers, that provide additional protection against the readability of the
payload of a response and against user tracking, additional protections be taken to make
sure that the use of dictionary-based compression does not reveal information that would not
otherwise be available.

In these cases, dictionary compression only be used when both the dictionary and the
compressed response are fully readable by the client.

In browser terms, that means either the dictionary and compressed response are same-origin to
the context they are being fetched from or the response is cross-origin and passes the Cross-
Origin Resource Sharing (CORS) check (see).

MUST

MUST

Section 4.9 of [FETCH]

9.3.3. Server Responsibility

As with any usage of compressed content in a secure context, a potential timing attack exists if
the attacker can control any part of the dictionary or if it can read the dictionary and control any
part of the content being compressed while performing multiple requests that vary the
dictionary or injected content. Under such an attack, the changing size or processing time of the
response reveals information about the content, which might be sufficient to read the
supposedly secure response.

RFC 9842 Compression Dictionary Transport September 2025

Meenan & Weiss Standards Track Page 14

https://rfc-editor.org/rfc/rfc7457#section-2.6
https://fetch.spec.whatwg.org/#cors-check

In general, a server can mitigate such attacks by preventing variations per request, as in
preventing active use of multiple dictionaries for the same content, disabling compression when
any portion of the content comes from uncontrolled sources, and securing access and control
over the dictionary content in the same way as the response content. In addition, the following
requirements on a server are intended to disable dictionary-aware compression when the client
provides CORS request header fields that indicate a cross-origin request context.

The following algorithm will return FALSE for cross-origin requests where precautions such as
not using dictionary-based compression should be considered:

If there is no "Sec-Fetch-Site" request header, return TRUE.
If the value of the "Sec-Fetch-Site" request header is "same-origin", return TRUE.
If there is no "Sec-Fetch-Mode" request header, return TRUE.
If the value of the "Sec-Fetch-Mode" request header is "navigate" or "same-origin", return
TRUE.
If the value of the "Sec-Fetch-Mode" request header is "cors":

If the response does not include an "Access-Control-Allow-Origin" response header, return
FALSE.
If the request does not include an "Origin" request header, return FALSE.
If the value of the "Access-Control-Allow-Origin" response header is "*", return TRUE.
If the value of the "Access-Control-Allow-Origin" response header matches the value of the
"Origin" request header, return TRUE.

Return FALSE.

1.
2.
3.
4.

5.

◦

◦
◦
◦

6.

10. Privacy Considerations
Since dictionaries are advertised in future requests using the hash of the content of the
dictionary, it is possible to abuse the dictionary to turn it into a tracking cookie.

To mitigate any additional tracking concerns, clients treat dictionaries in the same way
that they treat cookies . This includes partitioning the storage using partitioning
similar to or stricter than the partitioning used for cookies, as well as clearing the dictionaries
whenever cookies are cleared.

MUST
[RFC6265]

11. References

[FETCH]

11.1. Normative References

, , ,
.

WHATWG "Fetch Standard" WHATWG Living Standard <https://
fetch.spec.whatwg.org/> Commit snapshot: <https://fetch.spec.whatwg.org/
commit-snapshots/5a9680638ebfc2b3b7f4efb2bef0b579a2663951/>

RFC 9842 Compression Dictionary Transport September 2025

Meenan & Weiss Standards Track Page 15

https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/commit-snapshots/5a9680638ebfc2b3b7f4efb2bef0b579a2663951/
https://fetch.spec.whatwg.org/commit-snapshots/5a9680638ebfc2b3b7f4efb2bef0b579a2663951/

[FOLDING]

[HTTP]

[HTTP-CACHING]

[RFC2119]

[RFC8174]

[SHA-256]

[SHARED-BROTLI]

[STRUCTURED-FIELDS]

[URL]

[URLPATTERN]

[WEB-LINKING]

[ZSTD]

, , , and ,
, , , June

2020, .

, , and , ,
, , , June 2022,

.

, , and , ,
, , , June 2022,

.

, , ,
, , March 1997,
.

, ,
, , , May 2017,

.

 and ,
, , , May 2011,

.

, , , , and
, , , ,

September 2025, .

 and , ,
, , September 2024,

.

, , and ,
, , , , January 2005,

.

, , ,
.

, , , , October
2017, .

 and ,
, , , February 2021,

.

Watsen, K. Auerswald, E. Farrel, A. Q. Wu "Handling Long Lines in
Content of Internet-Drafts and RFCs" RFC 8792 DOI 10.17487/RFC8792

<https://www.rfc-editor.org/info/rfc8792>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD
97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/
rfc9110>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Caching"
STD 98 RFC 9111 DOI 10.17487/RFC9111 <https://www.rfc-editor.org/
info/rfc9111>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Eastlake 3rd, D. T. Hansen "US Secure Hash Algorithms (SHA and SHA-
based HMAC and HKDF)" RFC 6234 DOI 10.17487/RFC6234 <https://
www.rfc-editor.org/info/rfc6234>

Alakuijala, J. Duong, T. Kliuchnikov, E. Szabadka, Z. L. Vandevenne,
Ed. "Shared Brotli Compressed Data Format" RFC 9841 DOI 10.17487/RFC9841

<https://www.rfc-editor.org/info/rfc9841>

Nottingham, M. P. Kamp "Structured Field Values for HTTP" RFC
9651 DOI 10.17487/RFC9651 <https://www.rfc-editor.org/info/
rfc9651>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier
(URI): Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986
<https://www.rfc-editor.org/info/rfc3986>

WHATWG "URL Pattern Standard" WHATWG Living Standard <https://
urlpattern.spec.whatwg.org/> Commit snapshot: <https://
urlpattern.spec.whatwg.org/commit-snapshots/
696b4029d52e5854044bac6b72cdb198cb962ed0/>

Nottingham, M. "Web Linking" RFC 8288 DOI 10.17487/RFC8288
<https://www.rfc-editor.org/info/rfc8288>

Collet, Y. M. Kucherawy, Ed. "Zstandard Compression and the 'application/
zstd' Media Type" RFC 8878 DOI 10.17487/RFC8878 <https://
www.rfc-editor.org/info/rfc8878>

11.2. Informative References

RFC 9842 Compression Dictionary Transport September 2025

Meenan & Weiss Standards Track Page 16

https://www.rfc-editor.org/info/rfc8792
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9111
https://www.rfc-editor.org/info/rfc9111
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc9841
https://www.rfc-editor.org/info/rfc9651
https://www.rfc-editor.org/info/rfc9651
https://www.rfc-editor.org/info/rfc3986
https://urlpattern.spec.whatwg.org/
https://urlpattern.spec.whatwg.org/
https://urlpattern.spec.whatwg.org/commit-snapshots/696b4029d52e5854044bac6b72cdb198cb962ed0/
https://urlpattern.spec.whatwg.org/commit-snapshots/696b4029d52e5854044bac6b72cdb198cb962ed0/
https://urlpattern.spec.whatwg.org/commit-snapshots/696b4029d52e5854044bac6b72cdb198cb962ed0/
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8878
https://www.rfc-editor.org/info/rfc8878

[RFC5861]

[RFC6265]

[RFC7457]

[RFC7932]

, , ,
, May 2010, .

, , ,
, April 2011, .

, , and ,
, ,

, February 2015, .

 and , , ,
, July 2016, .

Nottingham, M. "HTTP Cache-Control Extensions for Stale Content" RFC 5861
DOI 10.17487/RFC5861 <https://www.rfc-editor.org/info/rfc5861>

Barth, A. "HTTP State Management Mechanism" RFC 6265 DOI 10.17487/
RFC6265 <https://www.rfc-editor.org/info/rfc6265>

Sheffer, Y. Holz, R. P. Saint-Andre "Summarizing Known Attacks on
Transport Layer Security (TLS) and Datagram TLS (DTLS)" RFC 7457 DOI
10.17487/RFC7457 <https://www.rfc-editor.org/info/rfc7457>

Alakuijala, J. Z. Szabadka "Brotli Compressed Data Format" RFC 7932 DOI
10.17487/RFC7932 <https://www.rfc-editor.org/info/rfc7932>

Authors' Addresses
Patrick Meenan ()editor
Google LLC

pmeenan@google.comEmail:

Yoav Weiss ()editor
Shopify Inc.

yoav.weiss@shopify.comEmail:

RFC 9842 Compression Dictionary Transport September 2025

Meenan & Weiss Standards Track Page 17

https://www.rfc-editor.org/info/rfc5861
https://www.rfc-editor.org/info/rfc6265
https://www.rfc-editor.org/info/rfc7457
https://www.rfc-editor.org/info/rfc7932
mailto:pmeenan@google.com
mailto:yoav.weiss@shopify.com

	RFC 9842
	Compression Dictionary Transport
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Use Cases
	1.1.1. Version Upgrade
	1.1.2. Common Content

	1.2. Notational Conventions

	2. Dictionary Negotiation
	2.1. Use-As-Dictionary
	2.1.1. "match"
	2.1.2. "match-dest"
	2.1.3. "id"
	2.1.4. "type"
	2.1.5. Examples
	2.1.5.1. Path Prefix
	2.1.5.2. Versioned Directories

	2.2. Available-Dictionary
	2.2.1. Dictionary Freshness Requirement
	2.2.2. Dictionary URL Matching
	2.2.3. Multiple Matching Dictionaries

	2.3. Dictionary-ID

	3. The "compression-dictionary" Link Relation Type
	4. Dictionary-Compressed Brotli
	5. Dictionary-Compressed Zstandard
	6. Negotiating the Content Encoding
	6.1. Accept-Encoding
	6.2. Content-Encoding

	7. IANA Considerations
	7.1. Content Encoding Registration
	7.2. Header Field Registration
	7.3. Link Relation Registration

	8. Compatibility Considerations
	9. Security Considerations
	9.1. Changing Content
	9.2. Reading Content
	9.3. Security Mitigations
	9.3.1. Cross-Origin Protection
	9.3.2. Response Readability
	9.3.3. Server Responsibility

	10. Privacy Considerations
	11. References
	11.1. Normative References
	11.2. Informative References

	Authors' Addresses

 Compression Dictionary Transport

 Google LLC

 pmeenan@google.com

 Shopify Inc.

 yoav.weiss@shopify.com

 ART
 HTTP
 compression dictionary
 shared brotli
 zstandard dictionary
 delta compression

 This document specifies a mechanism for dictionary-based compression in the
Hypertext Transfer Protocol (HTTP). By utilizing this technique, clients and
servers can reduce the size of transmitted data, leading to improved performance
and reduced bandwidth consumption. This document extends existing HTTP compression
methods and provides guidelines for the delivery and use of compression
dictionaries within the HTTP protocol.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Use Cases

 . Version Upgrade

 . Common Content

 . Notational Conventions

 . Dictionary Negotiation

 . Use-As-Dictionary

 . "match"

 . "match-dest"

 . "id"

 . "type"

 . Examples

 . Available-Dictionary

 . Dictionary Freshness Requirement

 . Dictionary URL Matching

 . Multiple Matching Dictionaries

 . Dictionary-ID

 . The "compression-dictionary" Link Relation Type

 . Dictionary-Compressed Brotli

 . Dictionary-Compressed Zstandard

 . Negotiating the Content Encoding

 . Accept-Encoding

 . Content-Encoding

 . IANA Considerations

 . Content Encoding Registration

 . Header Field Registration

 . Link Relation Registration

 . Compatibility Considerations

 . Security Considerations

 . Changing Content

 . Reading Content

 . Security Mitigations

 . Cross-Origin Protection

 . Response Readability

 . Server Responsibility

 . Privacy Considerations

 . References

 . Normative References

 . Informative References

 Authors' Addresses

 Introduction
 This specification defines a mechanism for using designated HTTP responses
as an external dictionary for future HTTP responses for compression schemes
that support using external dictionaries (e.g., Brotli and
Zstandard).
 This document describes the HTTP headers used for negotiating dictionary usage
and registers content-encoding values for compressing with Brotli and Zstandard
using a negotiated dictionary.
 The negotiation of dictionary usage leverages HTTP's content negotiation
(see) and is usable with all versions of HTTP.

 Use Cases
 Any HTTP response can be specified for use as a compression dictionary for
future HTTP requests, which provides a lot of flexibility. Two common
use cases that are seen frequently are described below.

 Version Upgrade
 Using a previous version of a resource as a dictionary for a newer version
enables delivery of a delta-compressed version of the changes, usually
resulting in significantly smaller responses than what can be achieved by
compression alone.
 For example:

 Version Upgrade Example

 Client
 Server
 GET
 /app.v1.js
 200
 OK
 Use-As-Dictionary:
 match="/app*js"
 <full
 app.v1.js
 resource
 -
 100KB
 compressed>
 Some
 time
 later
 ...
 Client
 Server
 GET
 /app.v2.js
 Available-Dictionary:
 :pZGm1A...2a2fFG4=:
 Accept-Encoding:
 gzip,
 br,
 zstd,
 dcb,
 dcz
 200
 OK
 Content-Encoding:
 dcb
 <delta-compressed
 app.v2.js
 resource
 -
 1KB>

Client Server
| |
| GET /app.v1.js |
|--->|
| |
| 200 OK |
| Use-As-Dictionary: match="/app*js" |
| <full app.v1.js resource - 100KB compressed> |
|<---|
| |

Some time later ...

Client Server
| |
| GET /app.v2.js |
| Available-Dictionary: :pZGm1A...2a2fFG4=: |
| Accept-Encoding: gzip, br, zstd, dcb, dcz |
|--->|
| |
| 200 OK |
| Content-Encoding: dcb |
| <delta-compressed app.v2.js resource - 1KB> |
|<---|
| |

 Common Content
 If several resources share common patterns in their responses, then it can be
useful to reference an external dictionary that contains those common patterns,
effectively compressing them out of the responses. Some examples of this are
common template HTML for similar pages across a site and common keys and values
in API calls.
 For example:

 Common Content Example

 Client
 Server
 GET
 /index.html
 200
 OK
 Link:
 <.../dict>;
 rel="compression-dictionary"
 <full
 index.html
 resource
 -
 100KB
 compressed>
 GET
 /dict
 200
 OK
 Use-As-Dictionary:
 match="/*html"
 Some
 time
 later
 ...
 Client
 Server
 GET
 /page2.html
 Available-Dictionary:
 :pZGm1A...2a2fFG4=:
 Accept-Encoding:
 gzip,
 br,
 zstd,
 dcb,
 dcz
 200
 OK
 Content-Encoding:
 dcb
 <delta-compressed
 page2.html
 resource
 -
 10KB>

Client Server
| |
| GET /index.html |
|--->|
| |
| 200 OK |
| Link: <.../dict>; rel="compression-dictionary" |
| <full index.html resource - 100KB compressed> |
|<---|
| |
| GET /dict |
|--->|
| |
| 200 OK |
| Use-As-Dictionary: match="/*html" |
|<---|
| |

Some time later ...

Client Server
| |
| GET /page2.html |
| Available-Dictionary: :pZGm1A...2a2fFG4=: |
| Accept-Encoding: gzip, br, zstd, dcb, dcz |
|--->|
| |
| 200 OK |
| Content-Encoding: dcb |
| <delta-compressed page2.html resource - 10KB> |
|<---|
| |

 Notational Conventions

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 This document uses the following terminology from to specify
syntax and parsing: Dictionary, String, Inner List, Token, and Byte
Sequence.
 This document uses the line folding strategies described in .
 This document also uses terminology from and .

 Dictionary Negotiation

 Use-As-Dictionary
 When responding to an HTTP Request, a server can advertise that the response can
be used as a dictionary for future requests for URLs that match the rules
specified in the "Use-As-Dictionary" response header.
 The "Use-As-Dictionary" response header is a Structured Field
 Dictionary with values for "match", "match-dest", "id",
and "type".

 "match"
 The "match" value of the "Use-As-Dictionary" response header is a String value that
provides the URL Pattern to use for request matching (see).
 The URL Pattern used for matching does not support using regular expressions.
 The following algorithm is used to validate that a given String value is a
valid URL Pattern that does not use regular expressions and is for the same
Origin () as the dictionary. It will return TRUE
for a valid match pattern and FALSE for an invalid pattern that MUST NOT be
used.

	
 Let MATCH be the value of "match" for the given dictionary.

 Let URL be the URL of the dictionary request.

 Let PATTERN be a "URL pattern struct" created by running the steps to "create a
URL pattern" by setting input=MATCH and baseURL=URL (see).

 If the result of running the "has regexp groups" steps for PATTERN returns
TRUE, then return FALSE (see the last list in).

 Return TRUE.

 The "match" value is required and MUST be included in the
"Use-As-Dictionary" response header for the dictionary to be considered valid.
 Operating at the HTTP level, the specified match patterns will operate on the
percent-encoded version of the URL path (see).
 For example, the URL "http://www.example.com/düsseldorf" would be encoded as
"http://www.example.com/d%C3%BCsseldorf" and a relevant match pattern would be:

Use-As-Dictionary: match="/d%C3%BCsseldorf"

 "match-dest"
 The "match-dest" value of the "Use-As-Dictionary" response header is an Inner List of
String values that provides a list of Fetch request destinations for the
dictionary to match (see "RequestDestination" in).
 An empty list for "match-dest" MUST match all destinations.
 For clients that do not support request destinations, the client MUST treat it
as an empty list and match all destinations.
 The "match-dest" value is optional and defaults to an empty list.

 "id"
 The "id" value of the "Use-As-Dictionary" response header is a String value that specifies
a server identifier for the dictionary. If an "id" value is present and has a
string length longer than zero, then it MUST be sent to the server in a
"Dictionary-ID" request header when the client sends an "Available-Dictionary"
request header for the same dictionary (see).
 The server identifier MUST be treated as an opaque string by the client.
 The server identifier MUST NOT be relied upon by the server to guarantee the
contents of the dictionary. The dictionary hash MUST be validated before use.
 The "id" value string length (after any decoding) supports up to 1024
characters.
 The "id" value is optional and defaults to the empty string.

 "type"
 The "type" value of the "Use-As-Dictionary" response header is a Token value that
describes the file format of the supplied dictionary.
 "raw" is defined as a dictionary format that represents an unformatted blob of
bytes suitable for any compression scheme to use.
 If a client receives a dictionary with a type that it does not understand, it
 MUST NOT use the dictionary.
 The "type" value is optional and defaults to "raw".

 Examples

 Path Prefix
 A response that contained a response header (as shown below) would specify matching any document request for a URL with a path prefix of
/product/ on the same Origin () as the original request:

NOTE: '\' line wrapping per RFC 8792

Use-As-Dictionary: \
 match="/product/*", match-dest=("document")

 Versioned Directories
 A response that contained a response header (as shown below) would match any path that starts with "/app/" and ends with "/main.js":

Use-As-Dictionary: match="/app/*/main.js"

 Available-Dictionary
 When an HTTP client makes a request for a resource for which it has an
appropriate dictionary, it can add an "Available-Dictionary" request header
to the request to indicate to the server that it has a dictionary available to
use for compression.
 The "Available-Dictionary" request header is a Structured Field
 Byte Sequence containing the SHA-256 hash of the
contents of a single available dictionary.
 The client MUST only send a single "Available-Dictionary" request header
with a single hash value for the best available match that it has available.
 For example:

Available-Dictionary: :pZGm1Av0IEBKARczz7exkNYsZb8LzaMrV7J32a2fFG4=:

 Dictionary Freshness Requirement
 To be considered as a match, the dictionary resource MUST be either fresh
 or allowed to be served stale (see).

 Dictionary URL Matching
 When a dictionary is stored as a result of a "Use-As-Dictionary" directive, it
includes a "match" string and an optional "match-dest" string that are used to
match an outgoing request from a client to the available dictionaries.
 To see if an outbound request matches a given dictionary, the following
algorithm will return TRUE for a successful match and FALSE for no-match:

 If the current client supports request destinations and a "match-dest"
string was provided with the dictionary:

 Let DEST be the value of "match-dest" for the given dictionary.

 Let REQUEST_DEST be the value of the destination for the current
 request.

 If DEST is not an empty list and if REQUEST_DEST is not in the DEST list
 of destinations, return FALSE.

 Let BASEURL be the URL of the dictionary request.

 Let URL represent the URL of the outbound request being checked.

 If the Origin of BASEURL and the Origin of URL are not the same, return
FALSE (see).

 Let MATCH be the value of "match" for the given dictionary.

 Let PATTERN be a "URL pattern struct" created by running the steps to "create a URL pattern" by setting input=MATCH and baseURL=URL (see).

 Return the result of running the "match" steps on PATTERN with input=URL,
which will check for a match between the request URL and the supplied "match"
string (see "Match" in).

 Multiple Matching Dictionaries
 When there are multiple dictionaries that match a given request URL, the client
 MUST pick a single dictionary using the following rules:

 For clients that support request destinations, a dictionary that specifies
and matches a "match-dest" takes precedence over a match that does not use a
destination.

 Given equivalent destination precedence, the dictionary with the longest
"match" takes precedence.

 Given equivalent destination and match length precedence, the most recently
fetched dictionary takes precedence.

 Dictionary-ID
 When an HTTP client makes a request for a resource for which it has an
appropriate dictionary and the dictionary was stored with a server-provided
"id" in the "Use-As-Dictionary" response header, the client MUST echo the stored
"id" in a "Dictionary-ID" request header.
 The "Dictionary-ID" request header is a Structured Field
String of up to 1024 characters (after any decoding) and MUST be identical to
the server-provided "id".
 For example, given an HTTP response that set a dictionary ID:

Use-As-Dictionary: match="/app/*/main.js", id="dictionary-12345"

 A future request that matches the given dictionary will include both the hash
and the ID:

Available-Dictionary: :pZGm1Av0IEBKARczz7exkNYsZb8LzaMrV7J32a2fFG4=:
Dictionary-ID: "dictionary-12345"

 The "compression-dictionary" Link Relation Type
 This specification defines the "compression-dictionary" link relation type
 that provides a mechanism for an HTTP response to provide a URL
for a compression dictionary that is related to but not directly used by the
current HTTP response.
 The "compression-dictionary" link relation type indicates that fetching and
caching the specified resource is likely to be beneficial for future requests.
The response to some of those future requests likely have the ability to use
the indicated resource as a compression dictionary.
 Clients can fetch the provided resource at a time that they determine would
 be appropriate.
 The response to the fetch for the compression dictionary needs to include a "Use-As-Dictionary" response header and a caching response header for it to be usable as a compression dictionary. The link relation only provides the mechanism for
triggering the fetch of the dictionary.
 The following example shows a link to a resource at
https://example.org/dict.dat that is expected to produce a compression
dictionary:

Link: <https://example.org/dict.dat>; rel="compression-dictionary"

 Dictionary-Compressed Brotli
 The "dcb" content encoding identifies a resource that is a
"Dictionary-Compressed Brotli" stream.
 A "Dictionary-Compressed Brotli" stream has a fixed header that is followed by
a Shared Brotli stream. The header consists of a fixed 4-byte
sequence and a 32-byte hash of the external dictionary that was used. The
Shared Brotli stream is created using the referenced external dictionary and a
compression window that is at most 16 MB in size.
 The dictionary used for the "dcb" content encoding is a "raw" dictionary type
as defined in and is treated as a prefix dictionary as defined in
 .
 The 36-byte fixed header is as follows:

 Magic_Number:

 4 fixed bytes -- 0xff, 0x44, 0x43, 0x42.

 SHA_256_Hash:

 32 bytes. SHA-256 hash digest of the dictionary .

 Clients that announce support for dcb content encoding MUST be able to
decompress resources that were compressed with a window size of up to 16 MB.
 With Brotli compression, the full dictionary is available during compression
and decompression independent of the compression window, allowing for
delta-compression of resources larger than the compression window.

 Dictionary-Compressed Zstandard
 The "dcz" content encoding identifies a resource that is a
"Dictionary-Compressed Zstandard" stream.
 A "Dictionary-Compressed Zstandard" stream is a binary stream that starts with
a 40-byte fixed header and is followed by a Zstandard stream of the
response that has been compressed with an external dictionary.
 The dictionary used for the "dcz" content encoding is a "raw" dictionary type
as defined in and is treated as a raw dictionary as per .
 The 40-byte header consists of a fixed 8-byte sequence followed by the
32-byte SHA-256 hash of the external dictionary that was used to compress the
resource:

 Magic_Number:

 8 fixed bytes -- 0x5e, 0x2a, 0x4d, 0x18, 0x20, 0x00, 0x00, 0x00.

 SHA_256_Hash:

 32 bytes. SHA-256 hash digest of the dictionary .

 The 40-byte header is a Zstandard skippable frame (little-endian 0x184D2A5E)
with a 32-byte length (little-endian 0x00000020) that is compatible with
existing Zstandard decoders.
 Clients that announce support for dcz content encoding MUST be able to
decompress resources that were compressed with a window size of at least 8 MB
or 1.25 times the size of the dictionary, whichever is greater, up to a
maximum of 128 MB.
 The window size used will be encoded in the content (currently, this can be
expressed in powers of two only) and it MUST be lower than this limit. An
implementation MAY treat a window size that exceeds the limit as a decoding
error.
 With Zstandard compression, the full dictionary is available during compression
and decompression until the size of the input exceeds the compression window.
Beyond that point, the dictionary becomes unavailable. Using a compression
window that is 1.25 times the size of the dictionary allows for full delta
compression of resources that have grown by 25% between releases while still
giving the client control over the memory it will need to allocate for a given
response.

 Negotiating the Content Encoding
 When a compression dictionary is available to compress the response to a given request, the encoding to be used is negotiated through the regular mechanism for negotiating content encoding in HTTP through the "Accept-Encoding" request header and "Content-Encoding" response header.
 The dictionary to use is negotiated separately and advertised in the
"Available-Dictionary" request header.

 Accept-Encoding
 When a dictionary is available for use on a given request and the client
chooses to make dictionary-based content encoding available, the client adds
the dictionary-aware content encodings that it supports to the
"Accept-Encoding" request header. For example:

Accept-Encoding: gzip, deflate, br, zstd, dcb, dcz

 When a client does not have a stored dictionary that matches the request or
chooses not to use one for the request, the client MUST NOT send its
dictionary-aware content encodings in the "Accept-Encoding" request header.

 Content-Encoding
 If a server supports one of the dictionary encodings advertised by the client
and chooses to compress the content of the response using the dictionary that
the client has advertised, then it sets the "Content-Encoding" response header
to the appropriate value for the algorithm selected. For example:

Content-Encoding: dcb

 If the response is cacheable, it MUST include a "Vary" header to prevent caches from
serving dictionary-compressed resources to clients that don't support them or
serving the response compressed with the wrong dictionary. For example:

Vary: accept-encoding, available-dictionary

 IANA Considerations

 Content Encoding Registration
 IANA has added the following entries to the "HTTP Content Coding
 Registry" maintained at :

 Name:
 dcb
 Description:
 "Dictionary-Compressed Brotli" data format.
 Reference:
 RFC 9842,

 Name:
 dcz
 Description:
 "Dictionary-Compressed Zstandard" data format.
 Reference:
 RFC 9842,

 Header Field Registration
 IANA has added the following entries to the
"Hypertext Transfer Protocol (HTTP) Field Name Registry" maintained at
 :

 Field Name
 Status
 Reference

 Use-As-Dictionary
 permanent
 RFC 9842,

 Available-Dictionary
 permanent
 RFC 9842,

 Dictionary-ID
 permanent
 RFC 9842,

 Link Relation Registration
 IANA has added the following entry to the "Link Relation Types" registry
 maintained at :

 Relation Name:
 compression-dictionary
 Description:
 Refers to a compression dictionary used for content encoding.
 Reference:
 RFC 9842,

 Compatibility Considerations
 It is not unusual for devices to be on the network path that intercept,
inspect, and process HTTP requests (web proxies, firewalls, intrusion detection
systems, etc.). To minimize the risk of these devices incorrectly processing
dictionary-compressed responses, compression dictionary transport MUST only be
used in secure contexts (HTTPS).

 Security Considerations
 The security considerations for Brotli , Shared Brotli
 , and Zstandard apply to the
dictionary-based versions of the respective algorithms.

 Changing Content
 The dictionary must be treated with the same security precautions as
the content because a change to the dictionary can result in a
change to the decompressed content.
 The dictionary is validated using an SHA-256 hash of the content to make sure
that the client and server are both using the same dictionary. The strength
of the SHA-256 hash algorithm isn't explicitly needed to counter attacks
since the dictionary is being served from the same origin as the content. That
said, if a weakness is discovered in SHA-256 and it is determined that the
dictionary negotiation should use a different hash algorithm, the
"Use-As-Dictionary" response header can be extended to specify a different
algorithm and the server would just ignore any "Available-Dictionary" requests
that do not use the updated hash.

 Reading Content
 The compression attacks in show that it's a bad idea
to compress data from mixed (e.g., public and private) sources. The data
sources include not only the compressed data but also the dictionaries. For
example, if secret cookies are compressed using a public-data-only dictionary,
information about the cookies is still leaked.
 The dictionary can reveal information about the compressed
data and vice versa. That is, data compressed with the dictionary can reveal
contents of the dictionary when an adversary can control parts of
the data to compress and see the compressed size. On the other hand, if
the adversary can control the dictionary, the adversary can learn
information about the compressed data.

 Security Mitigations
 If any of the mitigations do not pass, the client MUST drop the response and
return an error.

 Cross-Origin Protection
 To make sure that a dictionary can only impact content from the same origin
where the dictionary was served, the URL Pattern used for matching a dictionary
to requests () is guaranteed to be for the same origin that the
dictionary is served from.

 Response Readability
 For clients, like web browsers, that provide additional protection against the
readability of the payload of a response and against user tracking, additional
protections MUST be taken to make sure that the use of dictionary-based
compression does not reveal information that would not otherwise be available.
 In these cases, dictionary compression MUST only be used when both the
	 dictionary and the compressed response are fully readable by the client.
 In browser terms, that means either the dictionary and compressed response are same-origin to the context they are being fetched from or the response is cross-origin and passes the Cross-Origin Resource Sharing (CORS) check (see).

 Server Responsibility
 As with any usage of compressed content in a secure context, a potential
timing attack exists if the attacker can control any part of the dictionary
or if it can read the dictionary and control any part of the content being
compressed while performing multiple requests that vary the dictionary or
injected content. Under such an attack, the changing size or processing time
of the response reveals information about the content, which might be
sufficient to read the supposedly secure response.
 In general, a server can mitigate such attacks by preventing variations per
request, as in preventing active use of multiple dictionaries for the same
content, disabling compression when any portion of the content comes from
uncontrolled sources, and securing access and control over the dictionary
content in the same way as the response content. In addition, the following
requirements on a server are intended to disable dictionary-aware compression
when the client provides CORS request header fields that indicate a
cross-origin request context.
 The following algorithm will return FALSE for cross-origin requests where
precautions such as not using dictionary-based compression should be
considered:

 If there is no "Sec-Fetch-Site" request header, return TRUE.

 If the value of the "Sec-Fetch-Site" request header is "same-origin",
return TRUE.

 If there is no "Sec-Fetch-Mode" request header, return TRUE.

 If the value of the "Sec-Fetch-Mode" request header is "navigate" or
"same-origin", return TRUE.

 If the value of the "Sec-Fetch-Mode" request header is "cors":

 If the response does not include an "Access-Control-Allow-Origin" response header, return FALSE.

 If the request does not include an "Origin" request header, return FALSE.

 If the value of the "Access-Control-Allow-Origin" response header is "*", return TRUE.

 If the value of the "Access-Control-Allow-Origin" response header matches the value of the "Origin" request header, return TRUE.

 Return FALSE.

 Privacy Considerations
 Since dictionaries are advertised in future requests using the hash of the
content of the dictionary, it is possible to abuse the dictionary to turn it
into a tracking cookie.
 To mitigate any additional tracking concerns, clients MUST treat dictionaries
in the same way that they treat cookies .
This includes partitioning the storage using partitioning similar to or stricter than the partitioning used for cookies, as well as clearing the dictionaries whenever cookies are cleared.

 References

 Normative References

 Fetch Standard

 WHATWG

 WHATWG Living Standard
 Commit snapshot:

 Handling Long Lines in Content of Internet-Drafts and RFCs

 This document defines two strategies for handling long lines in width-bounded text content. One strategy, called the "single backslash" strategy, is based on the historical use of a single backslash ('\') character to indicate where line-folding has occurred, with the continuation occurring with the first character that is not a space character (' ') on the next line. The second strategy, called the "double backslash" strategy, extends the first strategy by adding a second backslash character to identify where the continuation begins and is thereby able to handle cases not supported by the first strategy. Both strategies use a self-describing header enabling automated reconstitution of the original content.

 HTTP Semantics

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document describes the overall architecture of HTTP, establishes common terminology, and defines aspects of the protocol that are shared by all versions. In this definition are core protocol elements, extensibility mechanisms, and the "http" and "https" Uniform Resource Identifier (URI) schemes.
 This document updates RFC 3864 and obsoletes RFCs 2818, 7231, 7232, 7233, 7235, 7538, 7615, 7694, and portions of 7230.

 HTTP Caching

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document defines HTTP caches and the associated header fields that control cache behavior or indicate cacheable response messages.
 This document obsoletes RFC 7234.

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)

 Federal Information Processing Standard, FIPS

 Shared Brotli Compressed Data Format

 Google, Inc.

 Google, Inc.

 Google, Inc.

 Google, Inc.

 Google, Inc.

 Structured Field Values for HTTP

 This document describes a set of data types and associated algorithms that are intended to make it easier and safer to define and handle HTTP header and trailer fields, known as "Structured Fields", "Structured Headers", or "Structured Trailers". It is intended for use by specifications of new HTTP fields.
 This document obsoletes RFC 8941.

 Uniform Resource Identifier (URI): Generic Syntax

 A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]

 URL Pattern Standard

 WHATWG

 WHATWG Living Standard
 Commit snapshot:

 Web Linking

 This specification defines a model for the relationships between resources on the Web ("links") and the type of those relationships ("link relation types").
 It also defines the serialisation of such links in HTTP headers with the Link header field.

 Zstandard Compression and the 'application/zstd' Media Type

 Zstandard, or "zstd" (pronounced "zee standard"), is a lossless data compression mechanism. This document describes the mechanism and registers a media type, content encoding, and a structured syntax suffix to be used when transporting zstd-compressed content via MIME.
 Despite use of the word "standard" as part of Zstandard, readers are advised that this document is not an Internet Standards Track specification; it is being published for informational purposes only.
 This document replaces and obsoletes RFC 8478.

 Informative References

 HTTP Cache-Control Extensions for Stale Content

 This document defines two independent HTTP Cache-Control extensions that allow control over the use of stale responses by caches. This document is not an Internet Standards Track specification; it is published for informational purposes.

 HTTP State Management Mechanism

 This document defines the HTTP Cookie and Set-Cookie header fields. These header fields can be used by HTTP servers to store state (called cookies) at HTTP user agents, letting the servers maintain a stateful session over the mostly stateless HTTP protocol. Although cookies have many historical infelicities that degrade their security and privacy, the Cookie and Set-Cookie header fields are widely used on the Internet. This document obsoletes RFC 2965. [STANDARDS-TRACK]

 Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS)

 Over the last few years, there have been several serious attacks on Transport Layer Security (TLS), including attacks on its most commonly used ciphers and modes of operation. This document summarizes these attacks, with the goal of motivating generic and protocol-specific recommendations on the usage of TLS and Datagram TLS (DTLS).

 Brotli Compressed Data Format

 This specification defines a lossless compressed data format that compresses data using a combination of the LZ77 algorithm and Huffman coding, with efficiency comparable to the best currently available general-purpose compression methods.

 Authors' Addresses

 Google LLC

 pmeenan@google.com

 Shopify Inc.

 yoav.weiss@shopify.com

